Биполярный шаговый двигатель подключение к

Главная » Ремонт и сервис » Как подключить шаговый двигатель


Шаговые двигатели и их микропроцессорные системы управления

Для работы практически всех электрических приборов, необходимы специальные приводные механизмы. Предлагаем рассмотреть, что такое биполярный шаговый двигатель, его принцип работы, как сделать и установить устройство своими руками, а также где купить такой генератор с редуктором.

Информация о шаговом приводе

Униполярный или биполярный шаговый привод (двигатель) – это специальный бесщеточный электрический двигатель постоянного тока, который разделяет полный оборот на несколько равных шагов. Для работы этого прибора необходимы специальная деталь: контроллер шагового двигателя.

Фото – Шаговый двигатель

Поимо магнитных деталей и обмоток, также в нем есть приборная панель (блок управления), сигнализаторы, передатчики.

Фото – Контроллер шагового двигателя

В основном он используется для шлифовального и фрезерного станка, работы различных бытовых устройств, производственных механизмов и транспортных средств.

Видео: шаговые двигатели

Принцип работы

Когда напряжение прикладывается к клеммам, специальные щетки двигателя начинают непрерывно вращаться. Шаговый движок холостого хода является уникальным благодаря своему важному свойству: преобразовывать поступающие входные импульсы (обычно прямоугольной направленности) в предварительно определенное положение приложенного ведущего вала.

Каждый импульс перемещает вал под фиксированным углом. Устройства с таким редуктором максимально эффективны, если имеют несколько электромагнитов зубчатого типа, расположенных вокруг центрального зубчато-образного куска железа. Электромагниты возбуждаются от внешней цепи управления, которую чаще всего представляет микроконтроллер. Чтобы сделать поворот вала двигателя, один электромагнит, к которому прикладывается энергия, как бы притягивает к своей поверхности зубья зубчатого колеса. Когда они выровнены по отношению к ведущему электромагниту, они слегка смещаются к следующей магнитной детали.

Первый электромагнит должен выключиться, а следующий включиться, тогда шестеренка будет вращаться, чтобы выровняться с предыдущим колесом, после чего процесс повторяется необходимое количество раз. Именно эти вращения называются постоянным шагом, скорость вращения двигателя определяется при помощи подсчета количества шагов для полного оборота или (оборотов) двигателя.

Фото – Шаговый двигатель в разборном виде

Схема управления шаговым двигателем имеет следующий вид:

Фото – Управление шаговым двигателем

Фото – Схема управления шаговым двигателем

Фото – Простая схема

Также для контроля работы устройства используется драйвер шагового двигателя. Это необходимо, если Вы будете настраивать мотор для работы станка с ЧПУ, отдельный ветрогенератор или используете его для работы ветряка.

Описание типов шаговых двигателей

Всего существует четыре основных типа шаговых двигателей:

  • С постоянным магнитом
  • Гибридный синхронный шаговый
  • Переменный.

Привод с постоянным магнитом

Устройства с магнитами применяют магнитную деталь в роторе. Они работают на принципе притяжения или отталкивания ротором и статором электромагнитного мотора. Переменно-шаговый двигатель имеет простой ротор из железа и работает на основе фундаментального принципа, по которому минимально допустимое отталкивание происходит с наименьшим зазором, исходя из этого, точки ротора притягиваются к полюсам магнитного статора. Устройства гибридного типа сочетают в себе оба описанных ранее принципа, это самые дорогие приборы.

Фото – Гибридный шаговый двигатель

Шаговые двухфазные двигатели

Самым распространенным типом данных механизмов по праву считается шаговый двухфазный мотор. Этот прибор достаточно простой, чтоб его можно было установить без какого-либо опыта, и довольно сложный, чтобы стоить дороже асинхронного движка.

Пошаговый двухфазный самодельный и купленный двигатель может иметь два основных типа обмотки для электромагнитных катушек: биполярную и униполярную.

Униполярные двигатели

Униполярный (однополярный) шаговый двигатель оснащен одной обмоткой с центральным магнитным краном, который влияет на каждую фазу. Каждая секция обмотки включается для того, чтобы обеспечивать определенное направление магнитного поля. Поскольку в такой конструкции магнитный полюс может работать без дополнительного переключения, то направления тока, коммутация цепи осуществляются очень просто (например, для стандартного среднемощного двигателя будет достаточно одного транзистора) для каждой обмотки. Как правило, учитывая фазовые переключения: три провода на фазу и шесть для выходного сигнала являются типичными для двухфазного двигателя.

Фото – Чертеж двухфазного электродвигателя

Шаговые двигатели и их микропроцессорные системы управления – это очень интересный раздел электротехнических наук. Микроконтроллер двигателя может быть использован для того, чтобы активировать транзистор в нужной (определенной программой) последовательности.

В свою очередь обмотки могут быть подключены путем прикосновения соединительных проводов вместе с постоянными магнитами двигателя. Если клеммы катушки соединятся, вал будет сложно повернуть. Сопротивление между общим проводом и торцом катушки проволоки всегда равняется половине сопротивления между торцами катушек и торцами проводов. Это потому что общий провод всегда длиннее, чем половина, соединяющая катушки.

Биполярный двигатель

Биполярные двигатели оснащены одной фазовой обмоткой. Ток в неё поступает переломным образом при помощи магнитного полюса, поэтому управляющая схема должна быть сложнее, как правило, с соединяющим мостом. Есть два провода на фазу, но они не являются общими. Смешение сигнала шагового двигателя на более высокой частоте, может снижать эффект трения системы.

Фото – Шаговый двухфазный двигатель

Также бывает трехфазный двигатель, у него более узкая область деятельности, такой шаговый механизм используется для фрезерных станков с ЧПУ (которые запускаются с компьютера), автомобилей типа Опель Вектра, Ниссан, Рено, ВАЗ и прочих транспортных средств, где необходимо использование дроссельной заслонке. Также для дисковода и принтера Epson используется шаговый мотор ЕМ-234 (EM-234).

Как подключить шаговый двигатель

Подключение шагового двигателя осуществляется по определенной схеме, в зависимости от того, сколько проводов имеет привод, и как Вы хотите запустить прибор.

Шаговые двигатели могут поставляться с четырьмя, пятью, шестью или восемью проводами. Если двигатель имеет четыре провода, то он может использоваться только с биполярным устройством. Каждая из двух фазных обмоток имеет пару проводов. Используйте метр, чтобы определить пары проводов с непрерывной связью между ними, чтобы подключить драйвер пошагово.

Мощный шести-проводной мотор имеет пару проводов для каждой обмотки и центр-кран для каждой обмотки. Он может быть подключен как к однополярному, так и к биполярному устройству. Используйте измерительный прибор для разделения провода. Для подключения к однополярному устройству можно использовать все шесть проводов. Для биполярного только один конец провода и один центральный кран каждой обмотки.

Пяти-проводной мотор похож на шестипроводной прибор, но центральные клеммы соединены внутри в качестве сплошного кабеля, и выходят к одному проводу. Поэтому отделить обмотки одну от другой практически невозможно без разрывов. Лучшее решение – это определить центр провода и соединять его с прочими проводниками, такой режим не только очень безопасен, но и максимально эффективен. После подключить прибор и проверить его работоспособность.

Фото – Установка шагового двигателя

Технические характеристики

Номинальное напряжение будет производить первичная обмотка при постоянном токе.

Начальная скорость крутящего момента шагового двигателя будет изменяться прямо пропорционально с током. От схемы привода и индуктивности обмоток зависит, как быстро линейный момент понижается на последующих высоких скоростях. Часто шаговые двигатели приспособлены к суровым условиям труда, они имеют IP65 степень защиты.

Часто сравнивают серводвигатель (сервопривод) и шаровую модель, но последние работают гораздо дольше и являются более продуктивными, им реже нужен ремонт. Но привод может пропустить больше вольт. Поэтому сравнивать эти модели нецелесообразно.

Перед тем, как выбрать прибор, нужно знать характеристики самых популярных шаровых двигателей российского производства:

Марка двигателя Шаг, градус Число фаз Крутящий момент, Нт
ШД-1 15 4 40
ДШ-0,04А 22,5 4 100
ДШИ 200 1,8 4 0,25
ДШ-6 18 4 2300

Не менее активно используются ДШР-40 (четырехфазные), NEMA 23, SanyoDenkiSM28, FDD (floppy-disk – флоппи диск), SM-200-0.22, SP-57, STH-39D1112, Purelogic R&D с энкодером. Чтобы подобрать нужный электрический двигатель, Вам нужно просчитать нужные параметры мощности, напряжение и крутящего момента. Чтобы определить эти данные, Вам нужно провести расчет.

Самой явной проблемой при работе шагового двигателя является управление шаговым двигателем без контроллера. Чтобы решить эту незадачу Вам нужно использовать специальный блок логической связи, который поможет управлять устройством без микросхемы контроллера. Но мы советуем разрабатывать систему контроля шагового двигателя именно на контроллере: Attiny2313, AVR-USB-MEGA16 (подсоединяется через usb), CNC-1318, HDD, PLCM-LPT, PIC, CD ULN, Arduino (Арудино) UNO, ATmega8, драйвер l293d.

Фото – Контроллер биполярного шагового двигателя

Обзор цен

Продажа шагового двигателя осуществляется в России, Украине, Беларуси и прочих странах в любом электротехническом магазине, цена зависит от типа прибора, мощности в кВт и его предназначения.

Город Цена на шаговый однополярный двигатель, у.е.
Киев 3500
Москва 3000
Харьков 4000
СПб 3500

www.asutpp.ru

УПРАВЛЕНИЕ ШАГОВЫМ ДВИГАТЕЛЕМ

el-shema.ru

Как работают шаговые двигатели | РОБОТОША

Использование шаговых двигателей является одним из самых простых, дешевых и легких решений для реализации систем точного позиционирования. Эти двигатели очень часто используются в различных станках ЧПУ и роботах. Сегодня я расскажу о том, как устроены шаговые двигатели и как они работают.

Что такое шаговый двигатель?

Прежде всего, шаговый двигатель — это двигатель. Это означает, что он преобразует электрическую энергию в механическую. Основное отличие между ним и всеми остальными типами двигателей состоит в способе, благодаря которому происходит вращение. В отличие от других моторов, шаговые двигатели вращаются НЕ непрерывно! Вместо этого, они вращаются шагами (отсюда и их название). Каждый шаг представляет собой часть полного оборота. Эта часть зависит, в основном, от механического устройства мотора и от выбранного способа управления им. Шаговые двигатели также различаются способами питания. В отличие от двигателей переменного или постоянного тока, обычно они управляются импульсами. Каждый импульс преобразуется в градус, на который происходит вращение. Например, 1.8º шаговый двигатель, поворачивает свой вал на 1.8° при каждом поступающем импульсе. Часто, из-за этой характеристики, шаговые двигатели еще называют цифровыми.

Основы работы шагового двигателя

Как и все моторы, шаговые двигатели состоят из статора и ротора. На роторе установлены постоянные магниты, а в состав статора входят катушки (обмотки). Шаговый двигатель, в общем случае, выглядит следующим образом:

Здесь мы видим 4 обмотки, расположенные под углом 90° по-отношению друг к другу, размещенные на статоре. Различия в способах подключения обмоток в конечном счете определяют тип подключения шагового двигателя. На рисунке выше, обмотки не соединяются вместе. Мотор по такой схеме имеет шаг поворота равный 90°. Обмотки задействуются по кругу — одна за другой. Направление вращения вала определяется порядком, в котором задействуются обмотки. Ниже показана работа такого мотора. Ток через обмотки протекает с интервалом в 1 секунду. Вал двигателя поворачивается на 90° каждый раз, когда через катушку протекает ток.

Режимы управления

Теперь рассмотрим различные способы подачи тока на обмотки и увидим, как в результате вращается вал мотора.

Волновое управление или полношаговое управление одной обмоткой

Этот способ описан выше и называется волновым управлением одной обмоткой. Это означает, что только через одну обмотку протекает электрический ток. Этот способ используется редко. В основном, к нему прибегают в целях снижения энергопотребления. Такой метод позволяет получить менее половины вращающего момента мотора, следовательно, нагрузка мотора не может быть значительной.

 У такого мотора будет 4 шага на оборот, что является номинальным числом шагов.

Полношаговый режим управления

Вторым, и наиболее часто используемым методом, является полношаговый метод. Для реализации этого способа, напряжение на обмотки подается попарно. В зависимости от способа подключения обмоток (последовательно или параллельно), мотору потребуется двойное напряжение или двойной ток для работы по отношению к необходимым при возбуждении одной обмотки. В этом случае мотор будет выдавать 100% номинального вращающего момента.

Такой мотор имеет 4 шага на полный оборот, что и является номинальным числом шагов для него.

Полушаговый режим

Это очень интересный способ получить удвоенную точность системы позиционирования, не меняя при этом ничего в «железе»! Для реализации этого метода, все пары обмоток могут запитываться одновременно, в результате чего, ротор повернется на половину своего нормального шага. Этот метод может быть также реализован с использованием одной или двух обмоток. Ниже показано, как это работает.

Однообмоточный режим

Двухобмоточный режим

Используя этот метод, тот же самый мотор сможет дать удвоенное число шагов на оборот, что означает двойную точность для системы позиционирования. Например, этот мотор даст 8 шагов на оборот!

Режим микрошага

Микрошаговый режим наиболее часто применяемый способ управления шаговыми двигателями на сегодняшний день. Идея микрошага состоит в подаче на обмотки мотора питания не импульсами, а сигнала, по своей форме, напоминающего синусоиду. Такой способ изменения положения при переходе от одного шага к другому позволяет получить более гладкое перемещение, делая шаговые моторы широко используемыми в таких приложениях как системы позиционирования в станках с ЧПУ. Кроме этого, рывки различных деталей, подключенных к мотору, также как и толчки самого мотора значительно снижаются. В режиме микрошага, шаговый мотор может вращаться также плавно как и обычные двигатели постоянного тока.

Форма тока, протекающего через обмотку похожа на синусоиду. Также могут использоваться формы цифровых сигналов. Вот некоторые примеры:

Метод микрошага является в действительности способом питания мотора, а не методом управления обмотками. Следовательно, микрошаг можно использовать и при волновом управлении и в полношаговом режиме управления. Ниже продемонстрирована работа этого метода:

Хотя кажется, что в режиме микрошага шаги становятся больше, но, на самом деле, этого не происходит. Для повышения точности часто используются трапецевидные шестерни. Этот метод используется для обеспечения плавного движения.

Типы шаговых двигателей

Шаговый двигатель с постоянным магнитом

Ротор такого мотора несет постоянный магнит в форме диска с двумя или большим количеством полюсов. Работает точно также как описано выше. Обмотки статора будут притягивать или отталкивать постоянный магнит на роторе и создавать тем самым крутящий момент. Ниже представлена схема шагового двигателя с постоянным магнитом.

Обычно, величина шага таких двигателей лежит в диапазоне 45-90°.

Шаговый двигатель с переменным магнитным сопротивлением

У двигателей этого типа на роторе нет постоянного магнита. Вместо этого, ротор изготавливается из магнитомягкого металла в виде зубчатого диска, типа шестеренки. Статор имеет более четырех обмоток. Обмотки запитываются в противоположных парах и притягивают ротор. Отсутствие постоянного магнита отрицательно влияет на величину крутящего момента, он значительно снижается. Но есть и большой плюс.  У этих двигателей нет стопорящего момента. Стопорящий момент — это вращающий момент, создаваемый постоянными магнитами ротора, которые притягиваются к арматуре статора при отсутствии тока в обмотках. Можно легко понять, что это за момент, если попытаться повернуть рукой отключенный шаговый двигатель с постоянным магнитом. Вы почувствуете различимые щелчки на каждом шаге двигателя. В действительности то, что вы ощутите и будет фиксирующим моментом, который притягивает магниты к арматуре статора. Ниже показана работа шагового двигателя с переменным магнитным сопротивлением.

Шаговые двигатели с переменным магнитным сопротивлением обычно имеют шаг, лежащий в диапазоне 5-15°.

Гибридный шаговый двигатель

Данный тип шаговых моторов получил название «гибридный» из-за того, что сочетает в себе характеристики шаговых двигателей и с постоянными магнитами и с переменным магнитным сопротивлением. Они обладают отличными удерживающим и динамическим крутящим моментами, а также очень маленькую величину шага, лежащую в пределах 0.9-5°, обеспечивая великолепную точность. Их механические части могут вращаться с большими скоростями, чем другие типы шаговых моторов. Этот тип двигателей используется в станках ЧПУ high-end класса и в роботах. Главный их недостаток — высокая стоимость.

Обычный мотор с 200 шагами на оборот будет иметь 50 положительных и 50 отрицательных полюсов с 8-ю обмотками (4-мя парами). Из-за того, что такой магнит нельзя произвести, было найдено элегантное решение. Берется два отдельных 50-зубых диска. Также используется цилиндрический постоянный магнит. Диски привариваются один с положительному, другой к отрицательному полюсам постоянного магнита. Таким образом, один диск имеет положительный полюс на своих зубьях, другой — отрицательный.

Два 50-зубых диска помещены сверху и снизу постоянного магнита

Фокус в том, что диски размещаются таким образом, что если посмотреть на них сверху, то они выглядят как один 100-зубый диск! Возвышения на одном диске совмещаются со впадинами на другом.

Впадины на одном диске выровнены с возвышениями на другом

Ниже показана работа гибридного шагового двигателя, имеющего 75 шагов на оборот (1.5° на шаг). Стоит заметить, что 6 обмоток спарены, каждая имеет обмотку с противоположной стороны. Вы наверняка ожидали, что катушки расположены под углом в 60° следом друг за другом, но, на самом деле, это не так. Если предположить, что первая пара — это самая верхняя и самая нижняя катушки, тогда вторая пара смещена под углом 60+5° по отношению к первой, и третья смещена на 60+5° по отношению ко второй. Угловая разница и является причиной вращения мотора. Режимы управления с полным и половинным шагом могут использоваться, впрочем как и волновое управление для снижения энергопотребления. Ниже продемонстрировано полношаговое управление. В полушаговом режиме, число шагов увеличится до 150!

Не пытайтесь следовать за обмотками, чтобы понаблюдать, как это работает. Просто сфокусируйтесь на одной обмотке и ждите.  Вы заметите, что всякий раз, когда обмотка задействована, есть 3 положительных полюса (красный) в 5° позади, которые притягиваются по направлению вращения и другие 3 отрицательных полюса (синий) в 5° впереди, которые толкаются в направлении вращения. Задействованная обмотка всегда находится между положительным и отрицательным полюсами.

Подключение обмоток

Шаговые двигатели относятся к многофазным моторам. Больше обмоток, значит, больше фаз. Больше фаз, более гладкая работа мотора и более выокая стоимость. Крутящий момент не связан с числом фаз. Наибольшее распространение получили двухфазные двигатели. Это минимальное количество необходимых для того, чтобы шаговый мотор функционировал. Здесь необходимо понять, что число фаз не обязательно определяет число обмоток. Например, если каждая фаза имеет 2 пары обмоток и мотор является двухфазным, то количество обмоток будет равно 8. Это определяет только механические характеристики мотора. Для упрощения, я рассмотрю простейший двухфазный двигатель с одной парой обмоток на фазу.

Существует три различных типа подключения для двухфазных шаговых двигателей. Обмотки соединяются между собой, и, в зависимости от подключения, используется различное число проводов для подключения мотора к контроллеру.

Биполярный двигатель

Это наиболее простая конфигурация. Используются 4 провода для подключения мотора к контроллеру. Обмотки соединяются внутри последовательно или параллельно. Пример биполярного двигателя:

Мотор имеет 4 клеммы. Два желтых терминала (цвета не соответствуют стандартным!) питают вертикальную обмотку, два розовых — горизонтальную обмотку. Проблема такой конфигурации состоит в том, что если кто-то захочет изменить магнитную полярность, то единственным способом будет изменение направления электрического тока. Это означает, что схема драйвера усложнится, например это будет H-мост.

Униполярный двигатель

В униполярном двигателе общий провод подключен к точке, где две обмотки соединены вместе:

Используя этот общий провод, можно легко изменить магнитные полюса. Предположим, например, что мы подключили общий провод к земле. Запитав сначала один вывод обмотки, а затем другой — мы изменяем магнитные полюса. Это означает, что схема для использования биполярного двигателя очень простая, как правило, состоит только из двух транзисторов на фазу. Основным недостатком является то, что каждый раз, используется только половина доступных катушечных обмоток. Это как при волновом управлении двигателем с возбуждением одной обмотки. Таким образом, крутящий момент всегда составляет около половины крутящего момента, который мог быть получен, если бы обе катушки были задействованы. Другими словами, униполярные электродвигатели должны быть в два раза более габаритными, по сравнению с биполярным двигателем, чтобы обеспечить такой же крутящий момент. Однополярный двигатель может использоваться как биполярный двигатель. Для этого нужно оставить общий провод неподключенным.

Униполярные двигатели могут иметь 5 или 6 выводов для подключения. На рисунке выше продемонстрирован униполярный мотор с 6 выводами. Существуют двигатели, в которых два общих провода соединены внутри. В этом случае, мотор имеет 5 клемм для подключения.

8-выводной шаговый двигатель

Это наиболее гибкий шаговый мотор в плане подключения. Все обмотки имеют выводы с двух сторон:

Этот двигатель может быть подключен любым из возможных способов. Он может быть подключен как:

  • 5 или 6-выводной униполярный,
  • биполярный с последовательно соединенными обмотками,
  • биполярный с параллельно соединенными обмотками,
  • биполярный с одним подключением на фазу для приложений с малым потреблением тока

robotosha.ru

Как подключить шаговый двигатель к Arduino Uno?

На производстве иногда применяют станки ЧПУ (Числовое Программное Управление). Агрегаты позволяют вырезать плоские детали, делать красивую резьбу по дереву и многое другое. На сегодняшний день в моде 3D-принтер, и он всё больше и больше набирает популярность. Я недавно узнал, что ученые в США впервые в мире напечатали человеческий позвоночник из биоматериалов. Вот технологии быстро растут. И во всех этих аппаратов невозможно без шагового двигателя (ШД). Правда, связка — шаговый двигатель и Ардуино — это далеко не идеальный вариант (не для серьёзных объектов). Но всё-таки призываю обратить внимание.

Из этой статьи вы узнаете:

Работа шагового двигателя и описание драйвераСхема сборки на FritzingОписание библиотеки myStep и AccelStepОписание кода программы

Доброго дня уважаемые друзья, коллеги, будущие партнёры и гости. Я снова на связи. С вами Гридин Семён. Сегодня мы рассмотрим интересную тему. Это соединение шагового двигателя с популярной электронной платой Arduino. Так что готовьте чай и читайте статью.

Работа шагового двигателя и описание драйвера

Как работает шаговик?

Для практических задач с точным перемещением объекта обязательно требуется ШД. Это мотор, который перемещает свой вал в зависимости от заданных шагов в программе контроллера.  Чаще всего их применяют в станках ЧПУ, робототехнике, манипуляторах, 3D-принтерах.

Мы же с вами рассмотрим конкретный двигатель 28BYj-48 с драйвером управления  ULN2003. Он достаточно дешёвый, прост в сборке и легко писать программу.

В 4-шаговом режиме он может совершать 2048 шагов, в 8-шаговом 4096 шагов. Питание 5 В, ток потребления 160 мА. Передаточное число 1:64, то есть один шаг он совершит на 5,625 градусов. Крутящий момент составляет 34 мН.м. Средняя скорость 15 об/мин, с помощью программного кода можно ускорить до 35 об/мин, но вы должны понимать, что мы при этом теряем мощность и точность.

Размеры двигателя указаны из первоисточника — даташита производителя Kiatronics.

А вот таким образом он выглядит изнутри:

Для небольших технических проектов — 28BYj-48 идеальный вариант. Его главным преимуществом является дешевизна и простота. Прилагаю спецификацию:

   Шаговые двигатели присутствуют в автомобилях, принтерах, компьютерах, стиральных машинах, электробритвах и многих других устройствах из повседневного быта. Однако многие радиолюбители до сих пор не знают, как заставить такой мотор работать и что он вообще из себя представляет. Итак, давайте узнаем, как использовать шаговый двигатель.

   Шаговые двигатели являются частью класса моторов, известных как безщеточные двигатели. Обмотки шагового двигателя являются частью статора. На роторе расположен постоянный магнит или, для случаев с переменным магнитным сопротивлением, зубчатый блок из магнитомягкого материала. Все коммутации производятся внешними схемами. Обычно система мотор — контроллер разрабатывается так, чтобы была возможность вывода ротора в любую, фиксированную позицию, то есть система управляется по положению. Цикличность позиционирования ротора зависит от его геометрии.

Типы шаговых двигателей

   Существуют три основных типа шаговых двигателей: переменной индуктивности, двигатели с постоянными магнитами, и гибридные двигатели.

   Двигатели переменной индуктивности используют только генерируемое магнитное поле на центральном валу, заставляющее вращаться и находиться на одной линии с напряжением электромагнитов.

   Двигатели с постоянными магнитами похожи на них, за исключением того, что центральный вал поляризован у северного и южного магнитных полюсов, которые будут соответствующим образом поворачивать его в зависимости от того, какие электромагниты включены.

   Гибридный мотор - это сочетание двух предыдущих. У его намагниченного центрального вала имеется два набора зубов для двух магнитных полюсов, которые затем выстраиваются в линию с зубами вдоль электромагнитов. В связи с двойным набором зубов на центральном валу, гибридный двигатель имеет наименьший доступный размер шага и поэтому является одним из наиболее популярных типов шаговых двигателей.

Униполярные и биполярные шаговые двигатели

   Также существует ещё два типа шаговых двигателей: униполярные и биполярные. На фундаментальном уровне, эти два типа работать точно так же; электромагниты включены в последовательном виде, заставляя центральный вал двигателя вращаться.

   Но униполярный шаговый двигатель работает только с положительным напряжением, а биполярный шаговый двигатель имеет два полюса - положительный и отрицательный.

   То есть фактическая разница между этими двумя типами заключается в том, что для однополярных требуется дополнительный провод в середине каждой катушки, что позволит току проходить либо к одному концу катушки, либо другому. Эти два противоположных направления производят две полярности магнитного поля, фактически имитируя как положительные, так и отрицательные напряжения.

   Хотя оба они имеют общий уровень питающих напряжений 5V, биполярный шаговый двигатель будет иметь больший крутящий момент, потому что ток течет через всю катушку, производя более сильное магнитное поле. С другой стороны, униполярные шаговые двигатели используют только половину длины катушки из-за дополнительного провода в середине катушки, а значит меньший крутящий момент доступен для удержания вала на месте.

Подключение шаговых двигателей

   Разные шаговые двигатели могут иметь разное количество проводов, как правило, 4, 5, 6, или 8. 4-х проводные линии могут поддержать только биполярные шаговые двигатели, поскольку у них нет центрального провода.

   5-ти и 6-ти проводные механизмы могут быть использованы как для однополярного, так и биполярного шагового двигателя, в зависимости от того, используется центральный провод на каждой из катушек или нет. 5-ти проводная конфигурация подразумевает, что центральные провода на два комплекта катушек соединены внутри между собой.

Способы управления шаговыми двигателями

   Есть несколько различных способов управления шаговыми двигателями - полный шаг, полушаг, и микрошаговый. Каждый из этих стилей предлагают различные крутящие моменты, шаги и размеры.

   Полный шаг - такой привод всегда имеет два электромагнита. Для вращения вала, один из электромагнитов выключается и далее электромагнит включен, вызывая вращение вала на 1/4 зуба (по крайней мере для гибридных шаговых двигателей). Этот стиль имеет самый сильный момент вращения, но и самый большой размер шага.

   Полшага. Для вращения центрального вала, первый электромагнит находится под напряжением, как первый шаг, затем второй также под напряжением, а первый все еще работает на второй шаг. При третьем шаге выключается первый электромагнит и четвертый шаг - поворот на третий электромагнит, а второй электромагнит по-прежнему работает. Этот метод использует в два раза больше шагов, чем полный шаг, но он также имеет меньший крутящий момент.

   Микрошаговый имеет наименьший размер шага из всех этих стилей. Момент вращения, связанный с этим стилем, зависит от того, как много тока, протекает через катушки в определенное время, но он всегда будет меньше, чем при полном шаге.

Схема подключения шаговых двигателей

   Чтобы управлять шаговым двигателем необходим контроллер. Контроллер — схема, которая подает напряжение к любой из четырех катушек статора. Схемы управления достаточно сложны, по сравнению с обычными электромоторчиками, и имеют много особенностей. Подробно рассматривать тут мы их не будем, а просто приведём фрагмент популярного контроллера на ULN2003A.

   В общем шаговые двигатели являются отличным способом для того, чтобы повернуть что-то в точный размер угла с большим количеством крутящего момента. Другое преимущество их в том, что скорость вращения может быть достигнута почти мгновенно при изменении направления вращения на противоположное.

Тип мотора Униполярный шаговый двигатель
Число фаз 4
Рабочее напряжение 5-12 вольт
Частота 100 Гц
Частота под нагрузкой > 600 Гц
Крутящий момент > 34.3 мНм (120 Гц)
Режим шага рекомендуется полушаговый режим (8-шаговая управляющая сигнальная последовательность)
Угол шага

8-шаговая управляющая сигнальная последовательность - 5.625º/шаг

4-шаговая управляющая сигнальная последовательность - 11.25º/шаг
Передаточное отношение редуктора Производителем заявлено 64:1
Вес 30 г

ШД имеет четыре обмотки, которые запитываются последовательно:

Для того, чтобы заставить мотор двигаться по часовой стрелке, нужно попеременно подавать на обмотки напряжение. Движок работает в двух режимах в шаговом и полушаговом, чем они отличаются, мы сейчас разберём.

1.Шаговый режим — это когда две из четырех обмоток запитываются на каждом шаге. Смотрите карту включения обмоток: Для этого способа используется библиотека myStepper.h.

Провод Фазы для шагового режима
1 2 3 4
4 оранжевый
3 желтый
2 розовый
1 синий

2.Полушаговый режим — это когда запитывается первая обмотка, потом вторая и третья вместе, потом четвёртая и т.д. В Даташите разработчика указано, что предпочтительнее режим полушага для мотора. Подробно изображено на карте подключений:

Провод Фазы для полушагового режима
1 2 3 4 5 6 7 8
4 оранжевый
3 желтый
2 розовый
1 синий

Описание драйвера ULN2003

Плата представляет собой силовой модуль, который содержит в себе семь независимых транзисторов Дарлингтона. Каждая пара представляет собой каскад из двух биполярных транзисторов. ULN2003 является неким усилителем с током нагрузки 500 мА и напряжением 50 В. На изображении отображена сама плата и описание выводов к ней.

Управляющие входы IN1,IN2,IN3,IN4 подключаются к любым дискретным выводам Arduino Uno. Если кому интересно, можете прочитать статью здесь. Светодиоды отображают, какой шаг совершил двигатель. Выводы для подключения внешнего источника питания. Рекомендую запитывать отдельной батареей, так как нагрузка может возрастать до 1 А. Только не забудьте переставить джампер на внешнее питание двигателя.

Схема сборки на Fritzing

Для использования в учебных проектах я рекомендую Arduino Uno. Схему подключений я представляю в двух вариантах: принципиальной и визуальной схеме.

Описание библиотеки AccelStepper

Давайте мы перейдём к интересной части нашей статьи. Это описание двух библиотек для работы с двигателями myStepper и AccelStepper. Больше буду обращать внимание на библиотеку AccelStepper, так как у нее больше функции, а именно:

  • есть возможность управлять скоростью, биполярный шаговый двигатель подключение к
  • поддержка различных шаговиков
  • поддержка одновременно работающих двигателей

Определение конфигурации моторов

AccelStepper mystepper (1, pinStep, pinDirection);

Для управления шаговым двигателем.

AccelStepper mystepper (2, pinA, pinB);

Биполярный ШД, управляемый Н-мостом.

AccelStepper mystepper (4, pinA1, pinA2, pinB1, pinB2);

Униполярный мотор, управляемый четырмя транзисторами.

mystepper.setMaxSpeed (stepsPerSecond);

Максимальная скорость двигателя. Скорость заведомо низкая. Сначала моторчик ускоряется до этой скорости, затем снижает её

mystepper.setAcceleration (stepsPerSecondSquared);

Ускорение шаговика, в шагах в секунду.

Управление положением

mystepper.moveTo (targetPosition);

Переместиться в абсолютно указанное положение. Само движение запускается функцией run ().

mystepper.move (distance);

Переместиться в относительно указанное положение. Само движение запускается функцией run (). Значение distance может быть больше или меньше нуля.

mystepper.currentPosition ();

Вернуть текущее абсолютное положение.

mystepper.distanceToGo ();

Вернуть расстояние до указанного положения. Может использоваться для проверки, достиг ли моторчик указанной конечной точки.

mystepper.run ();

Начать движение. Для продолжения движения двигателя следует вызывать функцию повторно.

mystepper.runToPosition ();

Начать движение и подождать когда двигатель достигнет указанной точки. Функция не осуществляет возврата пока он не остановится.

Управление скоростью

mystepper.setSpeed (stepsPerSecond);

Установить скорость в шагах за секунду. Сам процесс запускается функцией runSpeed ().

mystepper.runSpeed ();

Начать движение. Для продолжения движения двигателя следует вызывать функцию повторно.

Как  видите функции управления в принципе не сложны, достаточно посидеть несколько вечеров.

Описание кода программы

Я выложу для вас простой код, который будет достаточно скопировать и добавить в Ардуино IDE. О том, как программировать в этой среде я писал статью. Все описания строчек кода я написал в комментариях.

#include #define HALFSTEP 7 // Определение пинов для управления двигателем #define motorPin1 8 // IN1 на 1-м драйвере ULN2003 #define motorPin2 9 // IN2 на 1-м драйвере ULN2003 #define motorPin3 10 // IN3 на 1-м драйвере ULN2003 #define motorPin4 11 // IN4 на 1-м драйвере ULN2003 // Инициализируемся с последовательностью выводов IN1-IN3-IN2-IN4 // для использования AccelStepper с 28BYJ-48 AccelStepper stepper1(HALFSTEP, motorPin1, motorPin3, motorPin2, motorPin4); void setup(){ // Задаём максимальную скорость двигателя stepper1.setMaxSpeed(1000.0); // Задаём ускорение двигателя stepper1.setAcceleration(100.0); // Установим скорость в шагах за секунду stepper1.setSpeed(200); // Перемещаем в абсолютно указанное положение stepper1.moveTo(360); } void loop(){ // Изменяем направление, если шаговик достигает заданного положения if(stepper1.distanceToGo()==0) stepper1.moveTo(-stepper1.currentPosition()); stepper1.run(); }
// Определение пинов для управления двигателем#define motorPin1  8 // IN1 на 1-м драйвере ULN2003#define motorPin2  9 // IN2 на 1-м драйвере ULN2003#define motorPin3  10 // IN3 на 1-м драйвере ULN2003#define motorPin4  11 // IN4 на 1-м драйвере ULN2003// Инициализируемся с последовательностью выводов IN1-IN3-IN2-IN4 // для использования AccelStepper с 28BYJ-48AccelStepper stepper1(HALFSTEP, motorPin1, motorPin3, motorPin2, motorPin4);  // Задаём максимальную скорость двигателя  stepper1.setMaxSpeed(1000.0);  // Задаём ускорение двигателя  stepper1.setAcceleration(100.0);  // Установим скорость в шагах за секунду  // Перемещаем в абсолютно указанное положение  // Изменяем направление, если шаговик достигает заданного положения  if(stepper1.distanceToGo()==0)    stepper1.moveTo(-stepper1.currentPosition());

И напоследок небольшое видео демонстрации работы сборки:

На этом я заканчиваю, хорошего вам настроения, до встречи в новой статье. Друзья! Если вам понравилась статья, прошу поделиться ею в соц. сетях. Буду бесконечно благодарен

kip-world.ru

Смотрите также

  • Как остановить течь радиатора
  • Как настроить распредвал
  • Какие зимние шины лучше шипованные или липучки
  • Как починить прикуриватель
  • Как поменять задние стойки на ваз 2109
  • Как поменять стартер на ВАЗ 2109
  • Как сделать полный привод
  • Как сделать подсветку в автомобиль
  • Как отремонтировать стекло на автомобиле
  • Стоит ли промывать двигатель перед заменой масла
  • Как установить кресло в машине




Рекомендуем посмотреть ещё:


Закрыть ... [X]


Уроки Ардуино. Биполярный шаговый двигатель в системе Ардуино Как сделать пегаса без модов

Биполярный шаговый двигатель подключение к Биполярный шаговый двигатель подключение к Биполярный шаговый двигатель подключение к Биполярный шаговый двигатель подключение к Биполярный шаговый двигатель подключение к Биполярный шаговый двигатель подключение к Биполярный шаговый двигатель подключение к